Multiple antioxidants in the prevention and treatment of Alzheimer disease : Analysis of biologic rationale

The etiology of Alzheimer disease (AD) is not well understood; therefore, neither prevention strategies nor long-term effective treatment modalities are available for this disease. Based on laboratory and clinical studies, it appears that reactive oxygen species (ROS) and reactive nitrogen species (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical neuropharmacology 2000, Vol.23 (1), p.2-13
Hauptverfasser: PRASAD, K. N, HOVLAND, A. R, COLE, W. C, PRASAD, K. C, NAHREINI, P, EDWARDS-PRASAD, J, ANDREATTA, C. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The etiology of Alzheimer disease (AD) is not well understood; therefore, neither prevention strategies nor long-term effective treatment modalities are available for this disease. Based on laboratory and clinical studies, it appears that reactive oxygen species (ROS) and reactive nitrogen species (RNS) that are generated extracellularly and intracellularly by various mechanisms are among the major intermediary risk factors that initiate and promote neurodegeneration in idiopathic AD. Therefore, multiple antioxidant supplements could be useful in the prevention of AD, and as an adjunct to standard therapy in the treatment of AD. The products of inflammatory reactions such as prostaglandins (PGs; PGE1 and PGA1), free radicals, cytokines, and complement proteins are neurotoxic. Nonsteroidal antiinflammatory drugs (NSAIDs), which inhibit the synthesis of PGs, reduce the rate of deterioration of cognitive functions in patients with advanced AD. Cholinergic drugs are routinely used in the treatment of AD to improve cognitive functions. Therefore, we propose that a combination of multiple antioxidants and NSAIDs may be more beneficial in the prevention of AD, and that this combination taken together with cholinergic drugs may be more effective in the treatment of AD than the individual agents alone. We also hypothesize that, in idiopathic AD, epigenetic components of neurons such as mitochondria, membranes, other membranous structures, and protein modifications--rather than the genes of neurons--are the primary targets for the action of neurotoxins including free radicals. In some familial AD, mutations in amyloid precursor protein and presenilins are associated with the risk of early onset of this disease; however, their mechanisms of action are not fully understood.
ISSN:0362-5664
1537-162X
DOI:10.1097/00002826-200001000-00002