Intrauterine Coadministration of ERK1/2 Inhibitor U0126 Inhibits Interferon TAU Action in the Endometrium and Restores Luteolytic PGF2alpha Pulses in Sheep1
In ruminants, prostaglandin F2 alpha (PGF2alpha) is synthesized and released in a pulsatile pattern from the endometrial luminal epithelial (LE) cells during the process of luteolysis. Interferon tau (IFNT) is a Type 1 IFN secreted by the trophoblast cells of the developing conceptus. IFNT acts loca...
Gespeichert in:
Veröffentlicht in: | Biology of reproduction 2014-08, Vol.91 (2) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In ruminants, prostaglandin F2 alpha (PGF2alpha) is synthesized and released in a pulsatile pattern from the endometrial luminal epithelial (LE) cells during the process of luteolysis. Interferon tau (IFNT) is a Type 1 IFN secreted by the trophoblast cells of the developing conceptus. IFNT acts locally on endometrial LE cells to inhibit pulsatile releases of PGF2alpha and thus establish an endocrine environment for recognition of pregnancy. Cell signaling pathways through which IFNT stimulates expression of multiple genes or proteins in endometrial LE are largely unknown. Results of the present investigation indicate that intrauterine administration of IFNT inhibits pulsatile release of PGF2alpha, while coadministration IFNT and ERK 1/2 inhibitor U0126 restores luteolytic PGF2alpha pulses in sheep. IFNT increases phosphorylation of ERK1/2 proteins and increases its interaction with PGT proteins in endometrial LE. Blockade of ERK1/2 pathways inhibits IFNT action, decreases pERK1/2 and PGT protein interactions, and re-establishes the spatial expression of the oxytocin receptor protein completely and the estrogen receptor protein partially without modulating the expression of interferon regulatory factor-2 (IRF-2) protein in endometrial LE. IFNT does not decrease expression of COX-2, PGDH, or PGT protein in endometrial LE. Our results provide important new insights into IFNT signaling and the molecular endocrine control of PGF2alpha release at the time of establishment of pregnancy in ruminants. This novel IFNT-ERK1/2 signaling module needs to be explored in future studies to understand molecular and cellular mechanisms of IFNT action in endometrial LE in ruminants. |
---|---|
ISSN: | 0006-3363 1529-7268 |
DOI: | 10.1095/biolreprod.113.111872 |