Neurovascular anatomy of the protostegid turtle Rhinochelys pulchriceps and comparisons of membranous and endosseous labyrinth shape in an extant turtle
Chelonioid turtles are the only surviving group of reptiles that secondarily evolved marine lifestyles during the Mesozoic Early chelonioid evolution is documented by fossils of their stem group, such as protostegids, which yield insights into the evolution of marine adaptation. Neuroanatomical feat...
Gespeichert in:
Veröffentlicht in: | Zoological journal of the Linnean Society 2019-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Chelonioid turtles are the only surviving group of reptiles that secondarily evolved marine lifestyles during the Mesozoic Early chelonioid evolution is documented by fossils of their stem group, such as protostegids, which yield insights into the evolution of marine adaptation. Neuroanatomical features are commonly used to infer palaeoecology owing to the functional adaptation of the senses of an organism to its environment. We investigated the neuroanatomy and carotid circulation of the early Late Cretaceous protostegid Rhinochelys pulchriceps based on micro-computed tomography data. We show that the trigeminal foramen of turtles is not homologous to that of other reptiles. The endosseous labyrinth of R. pulchriceps has thick semicircular canals and a high aspect ratio. Comparisons among turtles and other reptiles show that the endosseous labyrinth aspect ratio is not a reliable predictor of the degree of aquatic adaptation, contradicting previous hypotheses. We provide the first models of neuroanatomical soft tissues of an extant turtle. Turtle brain morphology is not reflected by the brain cavity, and the endosseous labyrinth provides an incomplete reflection of membranous semicircular duct morphology. Membranous labyrinth geometry is conserved across gnathostomes, which allows approximate reconstruction of the total membranous labyrinth morphology from the endosseous labyrinth despite their poor reflection of duct morphology. |
---|---|
ISSN: | 0024-4082 1096-3642 |
DOI: | 10.1093/zoolinnean/zlz063 |