Epidemiology and challenges of dengue surveillance in the WHO South-East Asia Region
Abstract Dengue poses a significant health and economic burden in the WHO South-East Asia Region. Approaches for control need to be aligned with current knowledge on the epidemiology of dengue in the region. Such knowledge will ensure improved targeting of interventions to reduce dengue incidence an...
Gespeichert in:
Veröffentlicht in: | Transactions of the Royal Society of Tropical Medicine and Hygiene 2021-06, Vol.115 (6), p.583-599 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Dengue poses a significant health and economic burden in the WHO South-East Asia Region. Approaches for control need to be aligned with current knowledge on the epidemiology of dengue in the region. Such knowledge will ensure improved targeting of interventions to reduce dengue incidence and its socioeconomic impact. This review was undertaken to describe the contemporary epidemiology of dengue and critically analyse the existing surveillance strategies in the region. Over recent decades, dengue incidence has continued to increase with geographical expansion. The region has now become hyper-endemic for multiple dengue virus serotypes/genotypes. Every epidemic cycle was associated with a change of predominant serotype/genotype and this was often associated with severe disease with intense transmission. Classical larval indices are widely used in vector surveillance and adult mosquito samplings are not implemented as a part of routine surveillance. Further, there is a lack of integration of entomological and disease surveillance systems, often leading to inaction or delays in dengue prevention and control. Disease surveillance does not capture all cases, resulting in under-reporting, and has thus failed to adequately represent the true burden of disease in the region. Possible solutions include incorporating adult mosquito sampling into routine vector surveillance, the establishment of laboratory-based sentinel surveillance, integrated vector and dengue disease surveillance and climate-based early warning systems using available technologies like mobile apps. |
---|---|
ISSN: | 0035-9203 1878-3503 |
DOI: | 10.1093/trstmh/traa158 |