Wnt/β-Catenin Signaling Activates and Determines Hepatic Zonal Expression of Glutathione S-Transferases in Mouse Liver

Glutathione S-transferases (GSTs) play an essential role in the elimination of xenobiotic-derived electrophilic metabolites and also catalyze certain steps in the conversion of endogenous molecules. Their expression is controlled by different transcription factors, such as the antioxidant-activated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2010-05, Vol.115 (1), p.22-33
Hauptverfasser: Giera, Stefanie, Braeuning, Albert, Köhle, Christoph, Bursch, Wilfried, Metzger, Ute, Buchmann, Albrecht, Schwarz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Glutathione S-transferases (GSTs) play an essential role in the elimination of xenobiotic-derived electrophilic metabolites and also catalyze certain steps in the conversion of endogenous molecules. Their expression is controlled by different transcription factors, such as the antioxidant-activated Nrf2 or the constitutive androstane receptor. Here, we show that the Wnt/β-catenin pathway is also involved in the transcriptional regulation of GSTs: GSTm2, GSTm3, and GSTm6 are overexpressed in mouse hepatomas with activating Ctnnb1 (encoding β-catenin) mutations and in transgenic hepatocytes expressing activated β-catenin. Inversely, GSTm expression is reduced in mice with hepatocyte-specific knock out of Ctnnb1. Activation of β-catenin–dependent signaling stimulates GSTm expression in vitro. Activation of β-catenin in mouse hepatoma cells activates GSTm3 promoter–driven reporter activity, independently of β-catenin/T-cell factor sites, via a retinoid X receptor–binding site. By contrast, GSTm expression is inhibited upon Ras activation in mouse liver tumors and transgenic hepatocytes. Recent studies by different groups have shown that β-catenin–dependent signaling is involved in the transcriptional control of “perivenous” expression of various cytochrome P450s in mouse liver, whereas Ras signaling was hypothesized to antagonize the perivenous hepatocyte phenotype. In synopsis with our present results, it now appears that the Wnt/β-catenin pathway functions as a master regulator of the expression of both phase I and phase II drug-metabolizing enzymes in perivenous hepatocytes from mouse liver.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/kfq033