Reevaluating cancer risk estimates for short-term exposure scenarios

Estimates of cancer risk from short-term exposure to carcinogens generally rely on cancer potency values derived from chronic, lifetime-exposure studies and assume that exposures of limited duration are associated with a proportional reduction in cancer risk. The validity of this approach was tested...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 2000-11, Vol.58 (1), p.32-42
Hauptverfasser: HALMES, N. Christine, ROBERTS, Stephen M, TOLSON, J. Keith, PORTIER, Christopher J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Estimates of cancer risk from short-term exposure to carcinogens generally rely on cancer potency values derived from chronic, lifetime-exposure studies and assume that exposures of limited duration are associated with a proportional reduction in cancer risk. The validity of this approach was tested empirically using data from both chronic lifetime and stop-exposure studies of carcinogens conducted by the National Toxicology Program. Eleven compounds were identified as having data sufficient for comparison of relative cancer potencies from short-term versus lifetime exposure. The data were modeled using the chronic data alone, and also using the chronic and the stop-exposure data combined, where stop-exposure doses were adjusted to average lifetime exposure. Maximum likelihood estimates of the dose corresponding to a 1% added cancer risk (ED(01)) were calculated along with their associated 95% upper and lower confidence bounds. Statistical methods were used to evaluate the degree to which adjusted stop-exposures produced risks equal to those estimated from the chronic exposures. For most chemical/cancer endpoint combinations, inclusion of stop-exposure data reduced the ED(01), indicating that the chemical had greater apparent potency under stop-exposure conditions. For most chemicals and endpoints, consistency in potency between continuous and stop-exposure studies was achieved when the stop-exposure doses were averaged over periods of less than a lifetime-in some cases as short as the exposure duration itself. While the typical linear adjustments for less-than-lifetime exposure in cancer risk assessment can theoretically result in under- or overestimation of risks, empirical observations in this analysis suggest that an underestimation of cancer risk from short-term exposures is more likely.
ISSN:1096-6080
1096-0929
1096-0929
DOI:10.1093/toxsci/58.1.32