Subchronic Neurotoxicity Screening Studies with Six Organophosphate Insecticides: An Assessment of Behavior and Morphology Relative to Cholinesterase Inhibition

Sulprofos, disulfoton, azinphos-methyl, methamidophos, trichlorfon, and tebupirimphos were screened for neurotoxic potential, in accordance with U.S. EPA (FIFRA) requirements. Each organophosphate was administered through the diet for 13 weeks to separate groups of Fischer 344 rats at four dose leve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Toxicological sciences 1997-01, Vol.35 (1), p.101-119
Hauptverfasser: SHEETS, L. P., HAMILTON, B. F., SANGHA, G. K., THYSSEN, J. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sulprofos, disulfoton, azinphos-methyl, methamidophos, trichlorfon, and tebupirimphos were screened for neurotoxic potential, in accordance with U.S. EPA (FIFRA) requirements. Each organophosphate was administered through the diet for 13 weeks to separate groups of Fischer 344 rats at four dose levels, including a vehicle control. For each study, 12 rats/sex/dietary level were tested using a functional observational battery (FOB), automated measures of activity (figure8 maze), and detailed clinical observations, with half of the animals perfused at term for microscopic examination of neural and muscle tissues. Separate groups of satellite animals (6/sex/dietary level) were used to measure the effect of each treatment on plasma, erythrocyte (RBC), and brain cholinesterase (ChE) activity. The results show that measures of ChE activity were consistently the most sensitive indices of exposure and assisted in the interpretation of findings. All treatment-related neurobehavioral findings were ascribed to cholinergic toxicity, occurring only at dietary levels that produced more than 20% inhibition of plasma, RBC, and brain ChE activity. Neurobehavioral tests provided no evidence of additional cumulative toxicity after 8 weeks of treatment. The FOB and motor activity findings did not after the conclusions and generally did not reduce the neurobehavioral no-observed-effect level (NOEL) for any of the six compounds, relative to the results from detailed clinical observations as conducted in these studies. The one exception occurred with tebupirimphos, where the NOEL for motor activity was one dose level lower than the NOEL for the FOB and clinical observations. These results support the value of detailed clinical observations to screen for the neurotoxic potential of organophosphates and a general standard of more than 20% inhibition of brain ChE activity for cholinergic neurotoxicity.
ISSN:1096-6080
1096-0929
DOI:10.1093/toxsci/35.1.101