MCNP5 for proton radiography

The developmental version of MCNP5 has recently been extended to provide for continuous-energy transport of high-energy protons. This enhancement involves the incorporation of several significant new physics models into the code. Multiple Coulomb scattering is treated with an advanced model that tak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Radiation protection dosimetry 2005-12, Vol.116 (1-4), p.109-112
Hauptverfasser: Hughes, H. Grady, Brown, Forrest B., Bull, Jeffrey S., Goorley, John T., Little, Robert C., Liu, Lon-Chang, Mashnik, Stepan G., Prael, Richard E., Selcow, Elizabeth C., Sierk, Arnold J., Sweezy, Jeremy E., Zumbro, John D., Mokhov, Nikolai V., Striganov, Sergei I., Gudima, Konstantin K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The developmental version of MCNP5 has recently been extended to provide for continuous-energy transport of high-energy protons. This enhancement involves the incorporation of several significant new physics models into the code. Multiple Coulomb scattering is treated with an advanced model that takes account of projectile and nuclear target form factors. In the next version, this model will provide a coupled sampling of both angular deflection and collisional energy loss, including straggling. The proton elastic scattering model is also new, based on recent theoretical work. Charged particle transport in the presence of magnetic fields is accomplished either by using transfer maps from the COSY INFINITY code (in void regions) or by using an algorithm adapted from the MARS code (in void regions or in scattering materials). Work is underway to validate and implement the latest versions of the Cascade-Exciton Model and the Los Alamos Quark-Gluon String Model, which will process inelastic nuclear interactions and generate secondary particles.
ISSN:0144-8420
1742-3406
DOI:10.1093/rpd/nci109