Fintech for the Poor: Financial Intermediation Without Discrimination

Abstract I ask whether machine learning (ML) algorithms improve the efficiency in lending without compromising on equity in a credit environment where soft information dominates. I obtain loan application-level data from an Indian bank. To overcome the problem of the selective labels, I exploit the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of Finance 2021-03, Vol.25 (2), p.561-593
1. Verfasser: Tantri, Prasanna
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract I ask whether machine learning (ML) algorithms improve the efficiency in lending without compromising on equity in a credit environment where soft information dominates. I obtain loan application-level data from an Indian bank. To overcome the problem of the selective labels, I exploit the incentive-driven within officer difference in leniency within a calendar month. I find that the ML algorithm can lend 60% more at loan officers’ delinquency rate or achieve a 33% lower delinquency rate at loan officers’ approval rate. The efficiency is maintained even when the algorithm is explicitly prevented from discriminating against disadvantaged social classes.
ISSN:1572-3097
1573-692X
1875-824X
DOI:10.1093/rof/rfaa039