Bond Risk Premiums with Machine Learning

We show that machine learning methods, in particular, extreme trees and neural networks (NNs), provide strong statistical evidence in favor of bond return predictability. NN forecasts based on macroeconomic and yield information translate into economic gains that are larger than those obtained using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of financial studies 2021-02, Vol.34 (2), p.1046-1103
Hauptverfasser: Bianchi, Daniele, Büchner, Matthias, Hoogteijling, Tobias, Tamoni, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that machine learning methods, in particular, extreme trees and neural networks (NNs), provide strong statistical evidence in favor of bond return predictability. NN forecasts based on macroeconomic and yield information translate into economic gains that are larger than those obtained using yields alone. Interestingly, the nature of unspanned factors changes along the yield curve: stock-and labor-market-related variables are more relevant for shortterm maturities, whereas output and income variables matter more for longer maturities. Finally, NN forecasts correlate with proxies for time-varying risk aversion and uncertainty, lending support to models featuring both channels.
ISSN:0893-9454
1465-7368
DOI:10.1093/rfs/hhaa062