Revisiting Event-Study Designs: Robust and Efficient Estimation

Abstract We develop a framework for difference-in-differences designs with staggered treatment adoption and heterogeneous causal effects. We show that conventional regression-based estimators fail to provide unbiased estimates of relevant estimands absent strong restrictions on treatment-effect homo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of economic studies 2024-11, Vol.91 (6), p.3253-3285
Hauptverfasser: Borusyak, Kirill, Jaravel, Xavier, Spiess, Jann
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We develop a framework for difference-in-differences designs with staggered treatment adoption and heterogeneous causal effects. We show that conventional regression-based estimators fail to provide unbiased estimates of relevant estimands absent strong restrictions on treatment-effect homogeneity. We then derive the efficient estimator addressing this challenge, which takes an intuitive “imputation” form when treatment-effect heterogeneity is unrestricted. We characterize the asymptotic behaviour of the estimator, propose tools for inference, and develop tests for identifying assumptions. Our method applies with time-varying controls, in triple-difference designs, and with certain non-binary treatments. We show the practical relevance of our results in a simulation study and an application. Studying the consumption response to tax rebates in the U.S., we find that the notional marginal propensity to consume is between 8 and 11% in the first quarter—about half as large as benchmark estimates used to calibrate macroeconomic models—and predominantly occurs in the first month after the rebate.
ISSN:0034-6527
1467-937X
DOI:10.1093/restud/rdae007