A NOTE ON RATIONAL HOMOLOGICAL STABILITY OF AUTOMORPHISMS OF MANIFOLDS
By work of Berglund and Madsen, the rings of rational characteristic classes of fibrations and smooth block bundles with fibre $D^{2n}\sharp (S^n\times S^n)^{\sharp g}$, relative to the boundary, are for $2n\ge 6$ independent of $g$ in degrees $*\le (g-6)/2$. In this note, we explain how this range...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2020-09, Vol.71 (3), p.1069-1079 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | By work of Berglund and Madsen, the rings of rational characteristic classes of fibrations and smooth block bundles with fibre $D^{2n}\sharp (S^n\times S^n)^{\sharp g}$, relative to the boundary, are for $2n\ge 6$ independent of $g$ in degrees $*\le (g-6)/2$. In this note, we explain how this range can be improved to $*\le g-2$ using cohomological vanishing results due to Borel and the classical invariant theory. This implies that the analogous ring for smooth bundles is independent of $g$ in the same range, provided the degree is small compared to the dimension. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmathj/haaa017 |