A NOTE ON RATIONAL HOMOLOGICAL STABILITY OF AUTOMORPHISMS OF MANIFOLDS

By work of Berglund and Madsen, the rings of rational characteristic classes of fibrations and smooth block bundles with fibre $D^{2n}\sharp (S^n\times S^n)^{\sharp g}$, relative to the boundary, are for $2n\ge 6$ independent of $g$ in degrees $*\le (g-6)/2$. In this note, we explain how this range...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2020-09, Vol.71 (3), p.1069-1079
1. Verfasser: Krannich, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By work of Berglund and Madsen, the rings of rational characteristic classes of fibrations and smooth block bundles with fibre $D^{2n}\sharp (S^n\times S^n)^{\sharp g}$, relative to the boundary, are for $2n\ge 6$ independent of $g$ in degrees $*\le (g-6)/2$. In this note, we explain how this range can be improved to $*\le g-2$ using cohomological vanishing results due to Borel and the classical invariant theory. This implies that the analogous ring for smooth bundles is independent of $g$ in the same range, provided the degree is small compared to the dimension.
ISSN:0033-5606
1464-3847
DOI:10.1093/qmathj/haaa017