A Mean Value Theorem for General Dirichlet Series

In this paper we obtain a mean value theorem for a general Dirichlet series $f(s)= \sum_{j=1}^\infty a_j n_j^{-s}$ with positive coefficients for which the counting function $A(x) = \sum_{n_{j}\le x}a_{j}$ satisfies $A(x)=\rho x + O(x^\beta)$ for some ρ > 0 and β < 1. We prove that $\frac1T\in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2024-12, Vol.75 (4), p.1393-1413
Hauptverfasser: Broucke, Frederik, Hilberdink, Titus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain a mean value theorem for a general Dirichlet series $f(s)= \sum_{j=1}^\infty a_j n_j^{-s}$ with positive coefficients for which the counting function $A(x) = \sum_{n_{j}\le x}a_{j}$ satisfies $A(x)=\rho x + O(x^\beta)$ for some ρ > 0 and β < 1. We prove that $\frac1T\int_0^T |\,f(\sigma+it)|^2\, dt \to \sum_{j=1}^\infty a_j^2n_j^{-2\sigma}$ for $\sigma\gt\frac{1+\beta}{2}$ and obtain an upper bound for this moment for $\beta\lt\sigma\le \frac{1+\beta}{2}$. We provide a number of examples indicating the sharpness of our results.
ISSN:0033-5606
1464-3847
DOI:10.1093/qmath/haae051