Value Distribution of Logarithmic Derivatives of Quadratic Twists of Automorphic L-functions
Abstract Let $d\in\mathbb{N}$ and π be a fixed cuspidal automorphic representation of $\mathrm{GL}_{d}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\frac{L^{\prime}}{L}(1+it,\pi\otimes\chi_D)$ as D varies over fundamental...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of mathematics 2024-04, Vol.75 (1), p.97-137 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Let $d\in\mathbb{N}$ and π be a fixed cuspidal automorphic representation of $\mathrm{GL}_{d}(\mathbb{A}_{\mathbb{Q}})$ with unitary central character. We determine the limiting distribution of the family of values $-\frac{L^{\prime}}{L}(1+it,\pi\otimes\chi_D)$ as D varies over fundamental discriminants. Here, t is a fixed real number and χD is the real character associated with D. We establish an upper bound on the discrepancy in the convergence of this family to its limiting distribution. As an application of this result, we obtain an upper bound on the small values of $\left|\frac{L^{\prime}}{L}(1,\pi\otimes\chi_D)\right|$ when π is self-dual. |
---|---|
ISSN: | 0033-5606 1464-3847 |
DOI: | 10.1093/qmath/haad042 |