Averages of the Möbius Function on Shifted Primes

Abstract It is a folklore conjecture that the Möbius function exhibits cancellation on shifted primes; that is, $\sum_{p{\,\leqslant} X}\mu(p+h) \ = \ o(\pi(X))$ as $X\to\infty$ for any fixed shift h > 0. This appears in print at least since Hildebrand in 1989. We prove the conjecture on average...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of mathematics 2022-06, Vol.73 (2), p.729-757
1. Verfasser: Lichtman, Jared Duker
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract It is a folklore conjecture that the Möbius function exhibits cancellation on shifted primes; that is, $\sum_{p{\,\leqslant} X}\mu(p+h) \ = \ o(\pi(X))$ as $X\to\infty$ for any fixed shift h > 0. This appears in print at least since Hildebrand in 1989. We prove the conjecture on average for shifts $h{\,\leqslant} H$, provided $\log H/\log\log X\to\infty$. We also obtain results for shifts of prime k-tuples, and for higher correlations of Möbius with von Mangoldt and divisor functions. Our argument combines sieve methods with a refinement of Matomäki, Radziwiłł and Tao’s work on an averaged form of Chowla’s conjecture.
ISSN:0033-5606
1464-3847
DOI:10.1093/qmath/haab054