String-inspired special grand unification
Abstract We discuss a grand unified theory (GUT) based on an $SO(32)$ GUT gauge group broken to its subgroups including a special subgroup. In the $SO(32)$ GUT on the six-dimensional (6D) orbifold space $M^4\times T^2/\mathbb{Z}_2$, one generation of the standard model fermions can be embedded into...
Gespeichert in:
Veröffentlicht in: | Progress of theoretical and experimental physics 2017-10, Vol.2017 (10) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
We discuss a grand unified theory (GUT) based on an $SO(32)$ GUT gauge group broken to its subgroups including a special subgroup. In the $SO(32)$ GUT on the six-dimensional (6D) orbifold space $M^4\times T^2/\mathbb{Z}_2$, one generation of the standard model fermions can be embedded into a 6D bulk Weyl fermion in the $SO(32)$ vector representation. We show that for a three-generation model, all the 6D and 4D gauge anomalies in the bulk and on the fixed points are canceled out without exotic chiral fermions at low energies. |
---|---|
ISSN: | 2050-3911 2050-3911 |
DOI: | 10.1093/ptep/ptx135 |