E(K, L) level statistics of classically integrable quantum systems based on the Berry–Robnik approach
The theory of the quantal level statistics of a classically integrable system, developed by Makino et al. in order to investigate the non-Poissonian behaviors of level-spacing distribution (LSD) and level-number variance (LNV) [H. Makino and S. Tasaki, Phys. Rev. E 67, 066205 (2003); H. Makino and S...
Gespeichert in:
Veröffentlicht in: | Progress of theoretical and experimental physics 2014-07, Vol.2014 (7) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The theory of the quantal level statistics of a classically integrable system, developed by Makino et al. in order to investigate the non-Poissonian behaviors of level-spacing distribution (LSD) and level-number variance (LNV) [H. Makino and S. Tasaki, Phys. Rev. E 67, 066205 (2003); H. Makino and S. Tasaki, Prog. Theor. Phys. Suppl. 150, 376 (2003); H. Makino, N. Minami, and S. Tasaki, Phys. Rev. E 79, 036201 (2009); H. Makino and S. Tasaki, Prog. Theor. Phys. 114, 929 (2005)], is successfully extended to the study of the
$E(K,L)$
function, which constitutes a fundamental measure to determine most statistical observables of quantal levels in addition to LSD and LNV. In the theory of Makino et al., the eigenenergy level is regarded as a superposition of infinitely many components whose formation is supported by the Berry–Robnik approach in the far semiclassical limit [M. Robnik, Nonlinear Phenom. Complex Syst. 1, 1 (1998)]. We derive the limiting
$E(K,L)$
function in the limit of infinitely many components and elucidate its properties when energy levels show deviations from the Poisson statistics. |
---|---|
ISSN: | 2050-3911 2050-3911 |
DOI: | 10.1093/ptep/ptu084 |