Relativistic Faddeev 3D equations for three-body bound states without two-body t-matrices
This paper explores a novel revision of the Faddeev equation for three-body (3B) bound states, as initially proposed in Ref. [J. Golak, K. Topolnicki, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, Few Body Syst. 54, 2427 (2013)]. This innovative approach, referred to as t-matrix-free in this paper,...
Gespeichert in:
Veröffentlicht in: | Progress of theoretical and experimental physics 2024-01, Vol.2024 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper explores a novel revision of the Faddeev equation for three-body (3B) bound states, as initially proposed in Ref. [J. Golak, K. Topolnicki, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, Few Body Syst. 54, 2427 (2013)]. This innovative approach, referred to as t-matrix-free in this paper, directly incorporates two-body (2B) interactions and completely avoids the 2B transition matrices. We extend this formalism to relativistic 3B bound states using a three-dimensional (3D) approach without using partial wave decomposition. To validate the proposed formulation, we perform a numerical study using spin-independent Malfliet–Tjon and Yamaguchi interactions. Our results demonstrate that the relativistic t-matrix-free Faddeev equation, which directly implements boosted interactions, accurately reproduces the 3B mass eigenvalues obtained from the conventional form of the Faddeev equation, referred to as t-matrix-dependent in this paper, with boosted 2B t-matrices. Moreover, the proposed formulation provides a simpler alternative to the standard approach, avoiding the computational complexity of calculating boosted 2B t-matrices and leading to significant computational time savings. |
---|---|
ISSN: | 2050-3911 2050-3911 |
DOI: | 10.1093/ptep/ptad153 |