Vector bundles on fuzzy Kähler manifolds

Abstract We propose a matrix regularization of vector bundles over a general closed Kähler manifold. This matrix regularization is given as a natural generalization of the Berezin–Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress of Theoretical and Experimental Physics 2023-02, Vol.2023 (2), p.1
Hauptverfasser: Adachi, Hiroyuki, Ishiki, Goro, Kanno, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We propose a matrix regularization of vector bundles over a general closed Kähler manifold. This matrix regularization is given as a natural generalization of the Berezin–Toeplitz quantization and gives a map from sections of a vector bundle to matrices. We examine the asymptotic behaviors of the map in the large-N limit. For vector bundles with algebraic structure, we derive a beautiful correspondence of the algebra of sections and the algebra of corresponding matrices in the large-N limit. We give two explicit examples for monopole bundles over a complex projective space CPn and a torus T2n.
ISSN:2050-3911
2050-3911
DOI:10.1093/ptep/ptad006