Geodynamic Evolution of the Proto-Tethys Ocean in the West Kunlun Orogenic Belt, northwest Tibetan Plateau: Implications from the Subarc Crust and Lithospheric Mantle Modification

Abstract Radiogenic isotopes serve as a crucial tool for investigating crustal evolution, playing a pivotal role in revealing magma sources and petrogenesis. However, they can be ineffective in distinguishing between distinct magmatic sources with similar radiogenic isotopic compositions, a common o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of petrology 2024-10, Vol.65 (10)
Hauptverfasser: Tao, Zaili, Yin, Jiyuan, Fowler, Mike, Xiao, Wenjiao, Yang, Zhiming, Sun, Min, Kerr, Andrew C, Pease, Victoria, Wang, Tao, Chen, Wen, Yang, Fan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Radiogenic isotopes serve as a crucial tool for investigating crustal evolution, playing a pivotal role in revealing magma sources and petrogenesis. However, they can be ineffective in distinguishing between distinct magmatic sources with similar radiogenic isotopic compositions, a common occurrence in nature. Here we addresse this challenge in the Ordovician igneous rocks from the West Kunlun orogenic belt (WKOB), aiming to distinguish between two potential magmatic sources (i.e. the Tarim Craton and the Tianshuihai terrane) with similar isotopic compositions using appropriate thermodynamic and geochemical modeling based on mineral and whole-rock geochemistry. Zircon U–Pb dating yields ages of 483 ± 3 Ma for the Pushou gabbros and 469 ± 2 Ma and 461 ± 2 Ma for the Datong monzogranites and syenites, respectively. The Pushou gabbros exhibit low SiO2 (47.4–49.1 wt %), high MgO (5.5–6.9 wt %), high large-ion lithophile elements (LILEs, e.g. Rb, Ba, Th, and K), and low high field-strength elements (HFSEs, e.g. Nb, Ta, Zr, Hf, P, and Ti), suggesting an origin in subduction-modified mantle. They display high whole-rock (87Sr/86Sr)i ratios (0.7156 to 0.7192), negative whole-rock εNd(t) values (−7.1 to −7.8), as well as high zircon δ18O values (7.6–7.9‰) and enriched zircon Hf isotopic compositions (εHf(t) = −5.3 to −7.7), which are consistent with 1–5% subducted sediments in an enriched mantle source. Trace element models further confirm that the gabbros are most likely derived from low-degree (~15%) partial melting of subduction-modified Tarim mantle in the spinel–garnet facies rather than from the Tianshuihai mantle. The Datong syenites belong to the shoshonitic series and are characterized by medium SiO2 (59.5–61.4 wt %), relatively low MgO (0.9–1.2 wt %) and Mg# (37–42), enrichment in LILEs and depletion in HFSEs. They have high whole-rock (87Sr/86Sr)i ratios (0.7103 to 0.7105) and negative whole-rock εNd(t) values (−3.8 to −4.3), along with negative to slightly positive zircon εHf(t) values (−3.8 to +2.6), similar to coeval mafic rocks. Thermodynamic and geochemical modeling suggest that the Datong shoshonitic rocks likely originated via crystal fractionation of shoshonitic basaltic magmas in the SW Tarim Craton. The Datong monzogranites have high SiO2 (69.7–72.6 wt %), low MgO (0.6–0.7 wt %), and a typical enrichment in alkalis, Zr, and Nb, with depletion in Sr, P, and Ti, consistent with A-type granites. They are characterized by high whole-rock (
ISSN:0022-3530
1460-2415
DOI:10.1093/petrology/egae097