The primary geology of the Paleoproterozoic Mt Weld Carbonatite Complex, Western Australia

Abstract The paleoregolith overlying the c. 2.06 Ga Mt Weld carbonatite (eastern Yilgarn Craton, Western Australia) hosts one of the largest Rare Earth Element (REE) deposits globally. Historic exploration and research has focussed on this weathered material, with a lack of unweathered samples preve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of petrology 2024-02, Vol.65 (2)
Hauptverfasser: Chandler, Ross, Bhat, Ganesh, Mavrogenes, John, Knell, Brad, David, Rhiannon, Leggo, Thomas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The paleoregolith overlying the c. 2.06 Ga Mt Weld carbonatite (eastern Yilgarn Craton, Western Australia) hosts one of the largest Rare Earth Element (REE) deposits globally. Historic exploration and research has focussed on this weathered material, with a lack of unweathered samples preventing a thorough investigation into the nature of the underlying carbonatite. Recent deep drilling has allowed this first in-depth study into the primary geology, mineralogy and geochemistry of the carbonatite complex. Mt Weld shares a similar lithological architecture to other global carbonatite complexes, such as Ngualla (Tanzania, Bonga (Angola), Chilwa Island (Malawi) and Mirima Hill (Malawi), displaying a central (~600 m diameter) unit of magnesio- to ferrocarbonatite is surrounded by a broad (~1.2 km) annulus of calciocarbonatite, itself surrounded by a fenitic halo. Primary REE mineralisation occurs within the central magnesio- to ferrocarbonatites (~2% Total Rare Earth Oxides in bulk rock) and is dominated by fine-grained monazite hosted within fractures and voids, as well as late magmatic synchysite/bastnäsite. Both high and low phosphourous ferrocarbonatites occur within this central magnesio- to ferrocarbonatite unit that display (respectively) monazite or synchysite/bastnäsite mineralisation with textural evidence for these REE-bearing carbonates occasionally forming as polycrystalline pseudomorphs of earlier burbankite group minerals. Magnesio- to ferrocarbonatite dykes with zhonghuacerite/olekminskite/ancylite assemblages occur throughout the otherwise REE-poor calciocarbonatites (~0.2% Total Rare Earth Oxides in bulk rock). Late hydrothermal events strongly influenced the modern-day mineral assemblages with much of the existing ore mineral textures interpreted as hydrothermal reworkings of pre-existing REE-bearing minerals. A comparison of the fresh carbonatite and the paleoregolith geochemistry suggests minimal horizontal migration of ore elements during paleoregolith formation, with the overlying paleoregolith material broadly reflecting the underlying carbonatite trace and minor element signatures. This allows the inference of an approximately 5× upgrade in REE (and Nb) concentrations from the primary carbonatite to the overlying paleoregolith. Mt Weld shows distinct geological, mineralogical and isotopic differences to other currently mined carbonatite-associated REE deposits, such as Bayan Obo (China), Mountain Pass (USA) and the Mianning-Dec
ISSN:0022-3530
1460-2415
DOI:10.1093/petrology/egae007