Variable Modes of Formation for Tonalite–Trondhjemite–Granodiorite–Diorite (TTG)-related Porphyry-type Cu ± Au Deposits in the Neoarchean Southern Abitibi Subprovince (Canada): Evidence from Petrochronology and Oxybarometry
Most known porphyry Cu ± Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be...
Gespeichert in:
Veröffentlicht in: | Journal of petrology 2021-11, Vol.62 (11) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Most known porphyry Cu ± Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ~2·7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu ± Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ~2·74 Ga, ~2·70 Ga, and ~ 2·69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t) ± SD values of 4·5 ± 0·3, 4·2 ± 0·6, and 4·3 ± 0·4, and δ18O ± SD values of 5·40 ± 0·11 ‰, 3·91 ± 0·13 ‰, and 4·83 ± 0·12 ‰, respectively. These isotopic signatures indicate that, although these magmas are mantle-sourced with minimal crustal contamination, for the St-Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e. zircon, amphibole, apatite, and magnetite–ilmenite) that survived variable alteration and metamorphism (up to greenschist facies) were used for estimating fO2 of the causative magmas. Estimation of magmatic fO2 values, reported relative to the fayalite–magnetite–quartz buffer as ΔFMQ, using zircon geochemistry indicates that the fO2 values of the St-Jude, Côté Gold, and Clifford magmas increase from ΔFMQ –0·3 ± 0·6 to ΔFMQ +0·8 ± 0·4 and to ΔFMQ +1·2 ± 0·4, respectively. In contrast, amphibole chemistry yielded systematically higher fO2 values of ΔFMQ +1·6 ± 0·3 and ΔFMQ +2·6 ± 0·1 for Côté Gold and Clifford, respectively, which are consistent with previous studies that indicate that amphibole may overestimate the fO2 of intrusive rocks by up to 1 log unit. Micro X-ray absorption near edge structure (μ-XANES) spectrometric determination of sulfur (i.e. S6+/ΣS) in primary apatite yielded ≥ΔFMQ −0·3 and ΔFMQ +1·4–1·8 for St-Jude and Clifford, respectively. The magnetite–ilmeni |
---|---|
ISSN: | 0022-3530 1460-2415 |
DOI: | 10.1093/petrology/egab079 |