Mineralogy, Chemistry, and Genesis of the Boninite Series Volcanics, Chichijima, Bonin Islands, Japan

The Bonin archipelago represents an uplifted fore-arc terrain which exposes the products of Eocene supra-subduction zone magmatism. Chichijima, at the centre of the chain, represents the type locality for the high-Mg andesitic lava termed boninite. The range of extrusives which constitute the bonini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of petrology 1994-06, Vol.35 (3), p.577-617
Hauptverfasser: TAYLOR, REX. N., NESBITT, ROBERT W., VIDAL, PHILLIPE, HARMON, RUSSELL S., AUVRAY, BERNARD, CROUDACE, IAN W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Bonin archipelago represents an uplifted fore-arc terrain which exposes the products of Eocene supra-subduction zone magmatism. Chichijima, at the centre of the chain, represents the type locality for the high-Mg andesitic lava termed boninite. The range of extrusives which constitute the boninite series volcanics are present on Chichijima, and are disposed in the sequence boninite-andesite-dacite with increasing height in the volcano-stratigraphy. Progression to evolved compositions within the Chichijima boninite series is controlled by crystal fractionation from a boninite parental magma containing ∼ 15% MgO. Olivine and clinoenstatite are the initial liquidus phases, but extraction of enstatitic orthopyroxene, followed by clinopyroxene and plagioclase, is responsible for the general evolution from boninite, through andesite, to dacite. Some andesites within the overlying Mikazukiyama Formation are petrographically distinct from the main boninite series in containing magnetite phenocrysts and a high proportion of plagioclase. As such, these andesites have affinities with the calc-alkaline series. Major and trace element data for 74 boninitic series rocks from Chichijima are presented. Although major element variation is dominantly controlled by high-level crystal fractionation, the large variations in incompatiable trace element concentrations at high MgO compositions cannot be explained by this mechanism. Nd, Pb, and Sr isotopic data indicate the following: (1) a strong overprint on 87Sr/86Sr by seawater alteration; (2) Pb isotopes lie above the northern hemisphere reference line (NHRL) and are thus similar to the
ISSN:0022-3530
1460-2415
DOI:10.1093/petrology/35.3.577