A high-mass-ratio red-dwarf contact binary with an extremely cool close-in red dwarf
1SWASP J161335.80$-$284722.2 (hereafter J161335) is an eclipsing red-dwarf binary with an orbital period of $0.229778\:$d, which is around the short-period limit for contact binaries. Three sets of multi-color light curves of J161335 were obtained from different telescopes in 2015 and 2016 and are a...
Gespeichert in:
Veröffentlicht in: | Publications of the Astronomical Society of Japan 2019-12, Vol.71 (6) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 1SWASP J161335.80$-$284722.2 (hereafter J161335) is an eclipsing red-dwarf binary with an orbital period of $0.229778\:$d, which is around the short-period limit for contact binaries. Three sets of multi-color light curves of J161335 were obtained from different telescopes in 2015 and 2016 and are analyzed using the Wilson–Devinney method. We discovered that the system is a W-type contact system with a contact degree of 19% and a high mass ratio of 0.91. By using all available eclipse times, we found that the observed $-$ calculated $(O-C)$ diagram displays a cyclic oscillation with an amplitude of 0.00196($\pm 0.00006)\:$d and a period of 4.79($\pm 0.14)\:$yr while it undergoes a downward parabolic change. This downward variation corresponds to a continuous decrease in the orbital period at a rate of $dP/dt = -4.26(\pm$0.01) $\times$ 10$^{-7}\:$d$\:$yr$^{-1}$. The small-amplitude oscillation is explained as the light travel-time effect from the gravitational influence of a third body with a lowest mass of $M _{3}$ = 0.15($\pm 0.01)M_{\,\odot }$. In solving the light curves, we found that the third light is increasing, with the wavelength suggesting that the third body may be a cool red dwarf. This is in agreement with the results obtained by analyzing the $O-C$ diagram. The tertiary red dwarf is orbiting the central red-dwarf binary at an orbital separation of 2.8($\pm 0.2$) au. These results suggest that the J161335 system may be formed through early dynamical interaction where the original low-mass component was replaced by a higher-mass third body and the lower-mass component was kicked out to a wider orbit. In this way, a hierarchical triple system similar to J161335 with a high-mass-ratio binary and a small close-in third body is formed. |
---|---|
ISSN: | 0004-6264 2053-051X |
DOI: | 10.1093/pasj/psz113 |