Pregnancy: Amino acid concentrations in human embryological fluids

The concentrations of amino acids in samples of coelomic fluid (n = 15), amniotic fluid (n = 9) and maternal serum (n = 15) obtained from normal pregnancies between 7 and 12 weeks of gestation were measured using reversed-phase chromato-graphy with pre-column derivatization. The total molar concentr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Human reproduction (Oxford) 1994-06, Vol.9 (6), p.1175-1179
Hauptverfasser: Jauniaux, E., Sherwood, R.A., Jurkovic, D., Boa, F.G., Campbell, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The concentrations of amino acids in samples of coelomic fluid (n = 15), amniotic fluid (n = 9) and maternal serum (n = 15) obtained from normal pregnancies between 7 and 12 weeks of gestation were measured using reversed-phase chromato-graphy with pre-column derivatization. The total molar concentration of the 18 amino acids measured was 2.3 times higher in coelomic fluid than in maternal serum. All amino acids except serine and tryptophan were present in significantly higher concentrations in coelomic fluid than in maternal serum. Significant correlations between maternal serum and coelomic fluid were only found for proline, tyrosine and tryptophan, suggesting that levels of the other amino acids are mainly influenced by placental synthesis and do not directly depend on maternal amino acid metabolism. Levels of all amino acids were significantly higher in coelomic fluid compared to amniotic fluid. Compared to maternal serum, the amniotic fluid contained significantly higher levels of arginine, lysine, alanine and tyrosine and lower levels of serine, glutamine and tryptophan. The total molar amino acid concentration decreased significantly with gestational age in both coelomic fluid and maternal serum. These results suggest that amino acids accumulate in coelomic fluid to support the metabolism of the secondary yolk sac, and that the exocoelomic cavity is the reservoir for most nutrients needed by the embryo and early fetus in the first trimester of human pregnancy.
ISSN:0268-1161
1460-2350
DOI:10.1093/oxfordjournals.humrep.a138654