TAMI-21. TUMOR-ASSOCIATED MICROGLIA GUIDE GBM INFILTRATION VIA PLEXIN-B2
Glioblastoma (GBM) is the most common malignant primary brain tumor. The nature of invasiveness of GBM makes complete surgical resection difficult. However, how GBM cells achieve wide infiltration in the brain is poorly understood. Microglia, the resident immune cells in the brain can support GBM gr...
Gespeichert in:
Veröffentlicht in: | Neuro-oncology (Charlottesville, Va.) Va.), 2021-11, Vol.23 (Supplement_6), p.vi202-vi202 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Glioblastoma (GBM) is the most common malignant primary brain tumor. The nature of invasiveness of GBM makes complete surgical resection difficult. However, how GBM cells achieve wide infiltration in the brain is poorly understood. Microglia, the resident immune cells in the brain can support GBM growth and invasion, but the underlying mechanisms remain elusive. Here, we show that microglia are activated in a wide field away from tumor boundaries, ahead of tumor cell infiltration. Invading GBM cells are in close contact with microglia, progressively aligned with one another in the direction of tumor invasion. Moreover, ECM is also aligned with the infiltrating tumor and microglia, which may serve as invasion tracks in the brain. Mechanistically, we demonstrate that microglia direct cellular alignment and ECM remodeling in the invasion tracks through an axon guidance receptor Plexin-B2. Myeloid-specific ablation of Plexin-B2 perturbs microglia and tumor cell alignment, microglia migration, ECM organization, and GBM invasiveness. Together, our data reveal a hitherto under-appreciated role of microglia in providing directional cues for GBM invasion through physical interaction and alignment of ECM and tumor cells, thus providing new insights and novel molecular targets in curbing GBM invasion. |
---|---|
ISSN: | 1522-8517 1523-5866 |
DOI: | 10.1093/neuonc/noab196.805 |