FC022: IPI3K/AKT/MTOR Pathway Regulates Renal Expression of Klotho
Abstract BACKGROUND AND AIMS Chronic kidney disease (CKD) represents an important and growing burden on health worldwide, mainly driven by the increase in the incidence of associated risk factors like diabetes. As kidney function declines, changes in mineral metabolism occur, which contribute to the...
Gespeichert in:
Veröffentlicht in: | Nephrology, dialysis, transplantation dialysis, transplantation, 2022-05, Vol.37 (Supplement_3) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
BACKGROUND AND AIMS
Chronic kidney disease (CKD) represents an important and growing burden on health worldwide, mainly driven by the increase in the incidence of associated risk factors like diabetes. As kidney function declines, changes in mineral metabolism occur, which contribute to the increased risk of cardiovascular disease in CKD patients. In this respect, Klotho was described as an anti-ageing protein, mainly expressed in the kidney, where it acts as an obligatory co-receptor of the Fibroblast Growth Factor (FGF23), which is involved in urinary phosphate excretion. The earliest mineral metabolism change in CKD is the fall in renal and plasma Klotho levels, followed by an increase in FGF23. Klotho loss is related to inflammatory and fibrotic processes contributing not only to the progression of CKD but also to the increase in cardiovascular risk. Clinically, there is a growing interest in maintaining renal Klotho expression in patients, but the mechanisms in Klotho decline remain unknown.
PTEN is the main negative regulator of PI3K-AKT-mTOR pathway. PTEN degrades PIP3 to PIP2 decreasing the activation of the canonical insulin pathway. The involvement of PTEN in cancer has been broadly investigated. Furthermore, the PI3K/PTEN signalling pathways are involved in a wide variety of diseases including cardiac hypertrophy, heart failure, hypertension and acute kidney injury. However, its potential role in CKD has not been properly assessed.
The objective of this study was to investigate the role of PTEN and the PI3K/AKT/mTOR pathways in kidney Klotho levels and the modulation of phosphorus metabolism.
METHOD
We generated a proximal tubule conditional PTEN knockout mouse model (PT-PTEN-cKO), in which a high phosphorus diet (HPD) and rapamycin treatment were administered in order to analyse how PI3K/AKT/mTOR pathway participates in phosphorus metabolism and kidney Klotho levels. We used human proximal tubular cell (PTC) line HK-2 to knock down PTEN by means of transfection with shPTEN lentiviral vector, to study the direct effect of PTEN elimination in Klotho levels in vitro.
RESULTS
PT-PTEN-cKO mice present a specific activation of the PI3K/AKT/mTOR pathway in the proximal tubule. PTEN mRNA decrease correlates with a drop in kidney Klotho levels, accompanied by an increment of inflammatory and fibrotic markers. In addition, our model showed an increase in both, plasma phosphate and FGF23, with a decrease in the fractional excretion of phosphate ( |
---|---|
ISSN: | 0931-0509 1460-2385 |
DOI: | 10.1093/ndt/gfac099.001 |