A strongly truncated inner accretion disc in the Rapid Burster

Abstract The neutron star (NS) low-mass X-ray binary (LMXB) the Rapid Burster (RB; MXB 1730-335) uniquely shows both Type I and Type II X-ray bursts. The origin of the latter is ill-understood but has been linked to magnetospheric gating of the accretion flow. We present a spectral analysis of simul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society. Letters 2017-03, Vol.466 (1), p.L98-L102
Hauptverfasser: van den Eijnden, J., Bagnoli, T., Degenaar, N., Lohfink, A. M., Parker, M. L., in ‘t Zand, J. J. M, Fabian, A. C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The neutron star (NS) low-mass X-ray binary (LMXB) the Rapid Burster (RB; MXB 1730-335) uniquely shows both Type I and Type II X-ray bursts. The origin of the latter is ill-understood but has been linked to magnetospheric gating of the accretion flow. We present a spectral analysis of simultaneous Swift, NuSTAR and XMM–Newton observations of the RB during its 2015 outburst. Although a broad Fe K line has been observed before, the high quality of our observations allows us to model this line using relativistic reflection models for the first time. We find that the disc is strongly truncated at $41.8^{+6.7}_{-5.3}$ gravitational radii (∼87 km), which supports magnetospheric Type II burst models and strongly disfavours models involving instabilities at the innermost stable circular orbit. Assuming that the RB magnetic field indeed truncates the disc, we find B = (6.2 ± 1.5) × 108 G, larger than typically inferred for NS LMXBs. In addition, we find a low inclination ( $i = 29^{\circ } \pm 2^{\circ }$ ). Finally, we comment on the origin of the Comptonized and thermal components in the RB spectrum.
ISSN:1745-3925
1745-3933
DOI:10.1093/mnrasl/slw244