Apsidal precession, disc breaking and viscosity in warped discs

We demonstrate the importance of general relativistic apsidal precession in warped black hole accretion discs by comparing three-dimensional smoothed particle hydrodynamic simulations in which this effect is first neglected, and then included. If apsidal precession is neglected, we confirm the resul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society. Letters 2016-01, Vol.455 (1), p.L62-L66
Hauptverfasser: Nealon, Rebecca, Nixon, Chris, Price, Daniel J., King, Andrew
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the importance of general relativistic apsidal precession in warped black hole accretion discs by comparing three-dimensional smoothed particle hydrodynamic simulations in which this effect is first neglected, and then included. If apsidal precession is neglected, we confirm the results of an earlier magnetohydrodynamic simulation which made this assumption, showing that at least in this case the α viscosity model produces very similar results to those of simulations where angular momentum transport is due to the magnetorotational instability. Including apsidal precession significantly changes the predicted disc evolution. For moderately inclined discs thick enough that tilt is transported by bending waves, we find a disc tilt which is non-zero at the inner disc edge and oscillates with radius, consistent with published analytic results. For larger inclinations, we find disc breaking.
ISSN:1745-3925
1745-3933
DOI:10.1093/mnrasl/slv149