An origin of arc structures deeply embedded in dense molecular cloud cores

We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We performed self-gravitational hydrodynamical numerical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society. Letters 2015-05, Vol.449 (1), p.L123-L127
Hauptverfasser: Matsumoto, Tomoaki, Onishi, Toshikazu, Tokuda, Kazuki, Inutsuka, Shu-ichiro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigated the formation of arc-like structures in the infalling envelope around protostars, motivated by the recent Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the high-density molecular cloud core, MC27/L1521F. We performed self-gravitational hydrodynamical numerical simulations with an adaptive mesh refinement code. A filamentary cloud with a 0.1 pc width fragments into cloud cores because of perturbations due to weak turbulence. The cloud core undergoes gravitational collapse to form multiple protostars, and gravitational torque from the orbiting protostars produces arc structures extending up to a 1000 au scale. As well as on a spatial extent, the velocity ranges of the arc structures, ∼0.5 km s−1, are in agreement with the ALMA observations. We also found that circumstellar discs are often misaligned in triple system. The misalignment is caused by the tidal interaction between the protostars when they undergo close encounters because of a highly eccentric orbit of the tight binary pair.
ISSN:1745-3925
1745-3933
DOI:10.1093/mnrasl/slv031