3D simulations of planet trapping at disc–cavity boundaries

Abstract Inward migration of low-mass planets and embryos of giant planets can be stopped at the disc–cavity boundaries due to co-orbital corotation torque. We performed the first global three-dimensional (3D) simulations of planet migration at the disc–cavity boundary, and have shown that the bound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-05, Vol.485 (2), p.2666-2680
Hauptverfasser: Romanova, M M, Lii, P S, Koldoba, A V, Ustyugova, G V, Blinova, A A, Lovelace, R V E, Kaltenegger, L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Inward migration of low-mass planets and embryos of giant planets can be stopped at the disc–cavity boundaries due to co-orbital corotation torque. We performed the first global three-dimensional (3D) simulations of planet migration at the disc–cavity boundary, and have shown that the boundary is a robust trap for low-mass planets and embryos. A protoplanetary disc may have several such trapping regions at various distances from the star, such as at the edge of the stellar magnetosphere, the inner edge of the dead zone, the dust-sublimation radius and the snow lines. Corotation traps located at different distances from a star, and moving outward during the disc dispersal phase, may possibly explain the observed homogeneous distribution of low-mass planets with distance from their host stars.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz535