Large-scale star formation in Auriga region

ABSTRACT New observations in the VI bands along with archival data from the 2MASS and WISE surveys have been used to generate a catalogue of young stellar objects (YSOs) covering an area of about 6° × 6° in the Auriga region centred at l ∼ 173° and b ∼ 1.5°. The nature of the identified YSOs and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2020-02, Vol.492 (2), p.2446-2467
Hauptverfasser: Pandey, A K, Sharma, Saurabh, Kobayashi, N, Sarugaku, Y, Ogura, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT New observations in the VI bands along with archival data from the 2MASS and WISE surveys have been used to generate a catalogue of young stellar objects (YSOs) covering an area of about 6° × 6° in the Auriga region centred at l ∼ 173° and b ∼ 1.5°. The nature of the identified YSOs and their spatial distribution are used to study the star formation in the region. The distribution of YSOs along with that of the ionized and molecular gas reveals two ring-like structures stretching over an area of a few degrees each in extent. We name these structures as Auriga Bubbles 1 and 2. The centre of the Bubbles appears to be above the Galactic mid-plane. The majority of Class I YSOs are associated with the Bubbles, whereas the relatively older population, i.e. Class ii objects are rather randomly distributed. Using the minimum spanning tree analysis, we found 26 probable subclusters having five or more members. The subclusters are between ∼0.5 and ∼3 pc in size and are somewhat elongated. The star formation efficiency in most of the subcluster region varies between 5 ${{\ \rm per\ cent}}$ and 20 ${{\ \rm per\ cent}}$ indicating that the subclusters could be bound regions. The radii of these subclusters also support it.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz3596