A3COSMOS: the dust attenuation of star-forming galaxies at z = 2.5–4.0 from the COSMOS-ALMA archive
We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2020-02, Vol.491 (4), p.4724-4734 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present an analysis of the dust attenuation of star-forming galaxies at z = 2.5–4.0 through the relationship between the UV spectral slope (β), stellar mass (M*), and the infrared excess (IRX = LIR/LUV) based on far-infrared continuum observations from the Atacama Large Millimeter/sub-millimeter Array (ALMA). Our study exploits the full ALMA archive over the COSMOS field processed by the A3COSMOS team, which includes an unprecedented sample of ∼1500 galaxies at z ∼ 3 as primary or secondary targets in ALMA band 6 or 7 observations with a median continuum sensitivity of 126 $\rm {\mu Jy\, beam}^{-1}$ (1σ). The detection rate is highly mass dependent, decreasing drastically below log (M*/M⊙) = 10.5. The detected galaxies show that the IRX–β relationship of massive (log M*/M⊙ > 10) main-sequence galaxies at z = 2.5–4.0 is consistent with that of local galaxies, while starbursts are generally offset by $\sim 0.5\, {\rm dex}$ to larger IRX values. At the low-mass end, we derive upper limits on the infrared luminosities through stacking of the ALMA data. The combined IRX–M* relation at $\rm {log\, ({\it M}_{\ast }/\mathrm{M}_{\odot })\gt 9}$ exhibits a significantly steeper slope than reported in previous studies at similar redshifts, implying little dust obscuration at log M*/M⊙ < 10. However, our results are consistent with earlier measurements at z ∼ 5.5, indicating a potential redshift evolution between z ∼ 2 and z ∼ 6. Deeper observations targeting low-mass galaxies will be required to confirm this finding. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz3248 |