Deblending and classifying astronomical sources with Mask R-CNN deep learning

We apply a new deep learning technique to detect, classify, and deblend sources in multiband astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask Region-based Convolutional Neural Network image processing framework, a general code for efficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-12, Vol.490 (3), p.3952-3965
Hauptverfasser: Burke, Colin J, Aleo, Patrick D, Chen, Yu-Ching, Liu, Xin, Peterson, John R, Sembroski, Glenn H, Lin, Joshua Yao-Yu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We apply a new deep learning technique to detect, classify, and deblend sources in multiband astronomical images. We train and evaluate the performance of an artificial neural network built on the Mask Region-based Convolutional Neural Network image processing framework, a general code for efficient object detection, classification, and instance segmentation. After evaluating the performance of our network against simulated ground truth images for star and galaxy classes, we find a precision of 92 per cent at 80 per cent recall for stars and a precision of 98 per cent at 80 per cent recall for galaxies in a typical field with ∼30 galaxies arcmin−2. We investigate the deblending capability of our code, and find that clean deblends are handled robustly during object masking, even for significantly blended sources. This technique, or extensions using similar network architectures, may be applied to current and future deep imaging surveys such as Large Synoptic Survey Telescope and Wide-Field Infrared Survey Telescope. Our code, astro r-cnn, is publicly available at https://github.com/burke86/astro_rcnn.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz2845