Triggered star formation in a cometary atomic/molecular cloud in the Cep OB3 association

ABSTRACT We present a study of a small atomic/molecular cometary cloud associated with the infrared source IRAS 23153+6938. The cloud is located 70 pc from the massive O-type stars in the Cepheus OB3 association, and is very likely an excellent example of triggered star formation via radiation-drive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-11, Vol.489 (4), p.4809-4816
Hauptverfasser: Marshall, Brandon, Kerton, C R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We present a study of a small atomic/molecular cometary cloud associated with the infrared source IRAS 23153+6938. The cloud is located 70 pc from the massive O-type stars in the Cepheus OB3 association, and is very likely an excellent example of triggered star formation via radiation-driven implosion (RDI). The cloud was studied using $\rm{H\,\small{I}}$ and 12CO data from the Canadian Galactic Plane Survey (CGPS) and infrared observations from the Wide-field Infrared Survey Explorer (WISE) telescope. The molecular mass is approximately MH2 = 350 ± 45 M$\odot$, and we find that the single IRAS source is actually the centre of a small cluster of class I and class II young stellar objects (YSOs). To compare with theory, we make reasonable estimates for the cometary cloud’s initial conditions and find that the cloud is located within the correct theoretical phase space for RDI to occur. In addition, both the morphology of the cloud and the location of different YSO classes relative to the cloud match what would be expected for RDI. We conclude that RDI is the most likely explanation for star formation within the cloud, and we suggest that similar studies of molecular clouds associated with nearby OB associations may be able to identify comparable examples.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz2479