Evolution of relativistic thin discs with a finite ISCO stress – I. Stalled accretion

We present solutions to the relativistic thin disc evolutionary equation using an α-model for the turbulent stress tensor. Solutions with a finite stress at the innermost stable circular orbit (ISCO) give rise to bolometric light curves with a shallow power-law time dependence, in good agreement wit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2019-10, Vol.489 (1), p.132-142
Hauptverfasser: Mummery, Andrew, Balbus, Steven A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present solutions to the relativistic thin disc evolutionary equation using an α-model for the turbulent stress tensor. Solutions with a finite stress at the innermost stable circular orbit (ISCO) give rise to bolometric light curves with a shallow power-law time dependence, in good agreement with those observed in tidal disruption events. A self-similar model based on electron scattering opacity, for example, yields a power-law index of −11/14, as opposed to −19/16 for the case of zero ISCO stress. These solutions correspond to an extended period of relaxation of the evolving disc which, like the light curves they produce, is not sustainable indefinitely. Cumulative departures from the approximation of exact circular orbits cause the power-law index to evolve slowly with time, leading eventually to the steeper fall-off associated with traditional zero ISCO stress models. These modified solutions are discussed in detail in a companion paper.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stz2141