GASP – XX. From the loose spatially resolved to the tight global SFR–mass relation in local spiral galaxies
ABSTRACT Exploiting the sample of 30 local star-forming, undisturbed late-type galaxies in different environments drawn from the GAs Stripping Phenomena in galaxies with MUSE (GASP), we investigate the spatially resolved star formation rate–mass ($\rm \Sigma _{SFR}$–$\rm \Sigma _\ast$) relation. Our...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2019-09, Vol.488 (2), p.1597-1617 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Exploiting the sample of 30 local star-forming, undisturbed late-type galaxies in different environments drawn from the GAs Stripping Phenomena in galaxies with MUSE (GASP), we investigate the spatially resolved star formation rate–mass ($\rm \Sigma _{SFR}$–$\rm \Sigma _\ast$) relation. Our analysis includes also the galaxy outskirts (up to >4 effective radii, re), a regime poorly explored by other Integral Field Spectrograph surveys. Our observational strategy allows us to detect H α out to more than 2.7re for 75 per cent of the sample. Considering all galaxies together, the correlation between the $\rm \Sigma _{SFR}$ and $\rm \Sigma _\ast$ is quite broad, with a scatter of 0.3 dex. It gets steeper and shifts to higher $\rm \Sigma _\ast$ values when external spaxels are excluded and moving from less to more massive galaxies. The broadness of the overall relation suggests galaxy-by-galaxy variations. Indeed, each object is characterized by a distinct $\rm \Sigma _{SFR}$ –$\rm \Sigma _\ast$ relation and in some cases the correlation is very loose. The scatter of the relation mainly arises from the existence of bright off-centre star-forming knots whose $\rm \Sigma _{SFR}$–$\rm \Sigma _\ast$ relation is systematically broader than that of the diffuse component. The $\rm \Sigma _{SFR}$–$\rm \Sigma _{tot \, gas}$ (total gas surface density) relation is as broad as the $\rm \Sigma _{SFR}$–$\rm \Sigma _\ast$ relation, indicating that the surface gas density is not a primary driver of the relation. Even though a large galaxy-by-galaxy variation exists, mean $\rm \Sigma _{SFR}$ and $\rm \Sigma _\ast$ values vary of at most 0.7 dex across galaxies. We investigate the relationship between the local and global SFR–M* relation, finding that the latter is driven by the existence of the size–mass relation. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stz1829 |