emerge – an empirical model for the formation of galaxies since z ∼ 10

Abstract We present emerge, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from z ∼ 10 to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2018-06, Vol.477 (2), p.1822-1852
Hauptverfasser: Moster, Benjamin P, Naab, Thorsten, White, Simon D M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract We present emerge, an Empirical ModEl for the foRmation of GalaxiEs, describing the evolution of individual galaxies in large volumes from z ∼ 10 to the present day. We assign a star formation rate to each dark matter halo based on its growth rate, which specifies how much baryonic material becomes available, and the instantaneous baryon conversion efficiency, which determines how efficiently this material is converted to stars, thereby capturing the baryonic physics. Satellites are quenched following the delayed-then-rapid model, and they are tidally disrupted once their subhalo has lost a significant fraction of its mass. The model is constrained with observed data extending out to high redshift. The empirical relations are very flexible, and the model complexity is increased only if required by the data, assessed by several model selection statistics. We find that for the same final halo mass galaxies can have very different star formation histories. Galaxies that are quenched at z = 0 typically have a higher peak star formation rate compared to their star-forming counterparts. emerge predicts stellar-to-halo mass ratios for individual galaxies and introduces scatter self-consistently. We find that at fixed halo mass, passive galaxies have a higher stellar mass on average. The intracluster mass in massive haloes can be up to eight times larger than the mass of the central galaxy. Clustering for star-forming and quenched galaxies is in good agreement with observational constraints, indicating a realistic assignment of galaxies to haloes.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/sty655