The PAU survey: classifying low-z SEDs using Machine Learning clustering

ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-07, Vol.524 (3), p.3569-3581
Hauptverfasser: González-Morán, A L, Arrabal Haro, P, Muñoz-Tuñón, C, Rodríguez-Espinosa, J M, Sánchez-Almeida, J, Calhau, J, Gaztañaga, E, Castander, F J, Renard, P, Cabayol, L, Fernandez, E, Padilla, C, Garcia-Bellido, J, Miquel, R, De Vicente, J, Sanchez, E, Sevilla-Noarbe, I, Navarro-Gironés, D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3581
container_issue 3
container_start_page 3569
container_title Monthly notices of the Royal Astronomical Society
container_volume 524
creator González-Morán, A L
Arrabal Haro, P
Muñoz-Tuñón, C
Rodríguez-Espinosa, J M
Sánchez-Almeida, J
Calhau, J
Gaztañaga, E
Castander, F J
Renard, P
Cabayol, L
Fernandez, E
Padilla, C
Garcia-Bellido, J
Miquel, R
De Vicente, J
Sanchez, E
Sevilla-Noarbe, I
Navarro-Gironés, D
description ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5234 targets in the survey at 0.01 < z < 0.28. Among the groups, 3545 galaxies (68  per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr
doi_str_mv 10.1093/mnras/stad2123
format Article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_crossref_primary_10_1093_mnras_stad2123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad2123</oup_id><sourcerecordid>10.1093/mnras/stad2123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-157430bb56d2eb2d4388b96e093e2fa830993ecef127359000e74e4da114d6e3</originalsourceid><addsrcrecordid>eNqFkM1Pg0AQxTdGE7F69bxXD9vuFwt4a2prTTCaiGeywGAxFJod0OBfL1g9e5qXl3mTeT9CrgWfCx6pxb5xFhfY2UIKqU6IJ5TxmYyMOSUe58pnYSDEOblAfOecayWNR7bJDujz8pVi7z5guKV5bRGrcqiaN1q3n-yLvqzvkPY4GY8231UN0BisayYjr3vswI3ykpyVtka4-p0zkmzWyWrL4qf7h9UyZrk0YceEH2jFs8w3hYRMFlqFYRYZGAuALG2oeDSqHEohA-VH458QaNCFFUIXBtSMzI9nc9ciOijTg6v21g2p4OmEIf3BkP5hGAM3x0DbH_7b_QbyTGBT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The PAU survey: classifying low-z SEDs using Machine Learning clustering</title><source>Oxford Journals Open Access Collection</source><creator>González-Morán, A L ; Arrabal Haro, P ; Muñoz-Tuñón, C ; Rodríguez-Espinosa, J M ; Sánchez-Almeida, J ; Calhau, J ; Gaztañaga, E ; Castander, F J ; Renard, P ; Cabayol, L ; Fernandez, E ; Padilla, C ; Garcia-Bellido, J ; Miquel, R ; De Vicente, J ; Sanchez, E ; Sevilla-Noarbe, I ; Navarro-Gironés, D</creator><creatorcontrib>González-Morán, A L ; Arrabal Haro, P ; Muñoz-Tuñón, C ; Rodríguez-Espinosa, J M ; Sánchez-Almeida, J ; Calhau, J ; Gaztañaga, E ; Castander, F J ; Renard, P ; Cabayol, L ; Fernandez, E ; Padilla, C ; Garcia-Bellido, J ; Miquel, R ; De Vicente, J ; Sanchez, E ; Sevilla-Noarbe, I ; Navarro-Gironés, D</creatorcontrib><description><![CDATA[ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5234 targets in the survey at 0.01 < z < 0.28. Among the groups, 3545 galaxies (68  per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr <11; 6 < log (M⋆/M⊙) <11.26, and −14.67 < log (sSFR/yr−1) <−8. The groups are well-defined in their properties with galaxies having clear emission lines also having lower mass, are younger and have higher sSFR than those with elliptical like patterns. The characteristic values of galaxies showing clear emission lines are in agreement with the literature for starburst galaxies in COSMOS and GOODS-N fields at low redshift. The star-forming main sequence, sSFR versus stellar mass and UVJ diagram show clearly that different groups fall into different regions with some overlap among groups. Our main result is that the joint of low- resolution (R ∼ 50) photometric spectra provided by the PAU survey together with the unsupervised classification provides an excellent way to classify galaxies. Moreover, it helps to find and extend the analysis of extreme ELGs to lower masses and lower SFRs in the local Universe.]]></description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad2123</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Monthly notices of the Royal Astronomical Society, 2023-07, Vol.524 (3), p.3569-3581</ispartof><rights>2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-157430bb56d2eb2d4388b96e093e2fa830993ecef127359000e74e4da114d6e3</cites><orcidid>0000-0002-7959-8783 ; 0000-0002-2733-0670 ; 0000-0001-9632-0815 ; 0000-0002-5953-4491 ; 0000-0003-1123-6003</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stad2123$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>González-Morán, A L</creatorcontrib><creatorcontrib>Arrabal Haro, P</creatorcontrib><creatorcontrib>Muñoz-Tuñón, C</creatorcontrib><creatorcontrib>Rodríguez-Espinosa, J M</creatorcontrib><creatorcontrib>Sánchez-Almeida, J</creatorcontrib><creatorcontrib>Calhau, J</creatorcontrib><creatorcontrib>Gaztañaga, E</creatorcontrib><creatorcontrib>Castander, F J</creatorcontrib><creatorcontrib>Renard, P</creatorcontrib><creatorcontrib>Cabayol, L</creatorcontrib><creatorcontrib>Fernandez, E</creatorcontrib><creatorcontrib>Padilla, C</creatorcontrib><creatorcontrib>Garcia-Bellido, J</creatorcontrib><creatorcontrib>Miquel, R</creatorcontrib><creatorcontrib>De Vicente, J</creatorcontrib><creatorcontrib>Sanchez, E</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I</creatorcontrib><creatorcontrib>Navarro-Gironés, D</creatorcontrib><title>The PAU survey: classifying low-z SEDs using Machine Learning clustering</title><title>Monthly notices of the Royal Astronomical Society</title><description><![CDATA[ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5234 targets in the survey at 0.01 < z < 0.28. Among the groups, 3545 galaxies (68  per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr <11; 6 < log (M⋆/M⊙) <11.26, and −14.67 < log (sSFR/yr−1) <−8. The groups are well-defined in their properties with galaxies having clear emission lines also having lower mass, are younger and have higher sSFR than those with elliptical like patterns. The characteristic values of galaxies showing clear emission lines are in agreement with the literature for starburst galaxies in COSMOS and GOODS-N fields at low redshift. The star-forming main sequence, sSFR versus stellar mass and UVJ diagram show clearly that different groups fall into different regions with some overlap among groups. Our main result is that the joint of low- resolution (R ∼ 50) photometric spectra provided by the PAU survey together with the unsupervised classification provides an excellent way to classify galaxies. Moreover, it helps to find and extend the analysis of extreme ELGs to lower masses and lower SFRs in the local Universe.]]></description><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Pg0AQxTdGE7F69bxXD9vuFwt4a2prTTCaiGeywGAxFJod0OBfL1g9e5qXl3mTeT9CrgWfCx6pxb5xFhfY2UIKqU6IJ5TxmYyMOSUe58pnYSDEOblAfOecayWNR7bJDujz8pVi7z5guKV5bRGrcqiaN1q3n-yLvqzvkPY4GY8231UN0BisayYjr3vswI3ykpyVtka4-p0zkmzWyWrL4qf7h9UyZrk0YceEH2jFs8w3hYRMFlqFYRYZGAuALG2oeDSqHEohA-VH458QaNCFFUIXBtSMzI9nc9ciOijTg6v21g2p4OmEIf3BkP5hGAM3x0DbH_7b_QbyTGBT</recordid><startdate>20230724</startdate><enddate>20230724</enddate><creator>González-Morán, A L</creator><creator>Arrabal Haro, P</creator><creator>Muñoz-Tuñón, C</creator><creator>Rodríguez-Espinosa, J M</creator><creator>Sánchez-Almeida, J</creator><creator>Calhau, J</creator><creator>Gaztañaga, E</creator><creator>Castander, F J</creator><creator>Renard, P</creator><creator>Cabayol, L</creator><creator>Fernandez, E</creator><creator>Padilla, C</creator><creator>Garcia-Bellido, J</creator><creator>Miquel, R</creator><creator>De Vicente, J</creator><creator>Sanchez, E</creator><creator>Sevilla-Noarbe, I</creator><creator>Navarro-Gironés, D</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7959-8783</orcidid><orcidid>https://orcid.org/0000-0002-2733-0670</orcidid><orcidid>https://orcid.org/0000-0001-9632-0815</orcidid><orcidid>https://orcid.org/0000-0002-5953-4491</orcidid><orcidid>https://orcid.org/0000-0003-1123-6003</orcidid></search><sort><creationdate>20230724</creationdate><title>The PAU survey: classifying low-z SEDs using Machine Learning clustering</title><author>González-Morán, A L ; Arrabal Haro, P ; Muñoz-Tuñón, C ; Rodríguez-Espinosa, J M ; Sánchez-Almeida, J ; Calhau, J ; Gaztañaga, E ; Castander, F J ; Renard, P ; Cabayol, L ; Fernandez, E ; Padilla, C ; Garcia-Bellido, J ; Miquel, R ; De Vicente, J ; Sanchez, E ; Sevilla-Noarbe, I ; Navarro-Gironés, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-157430bb56d2eb2d4388b96e093e2fa830993ecef127359000e74e4da114d6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>González-Morán, A L</creatorcontrib><creatorcontrib>Arrabal Haro, P</creatorcontrib><creatorcontrib>Muñoz-Tuñón, C</creatorcontrib><creatorcontrib>Rodríguez-Espinosa, J M</creatorcontrib><creatorcontrib>Sánchez-Almeida, J</creatorcontrib><creatorcontrib>Calhau, J</creatorcontrib><creatorcontrib>Gaztañaga, E</creatorcontrib><creatorcontrib>Castander, F J</creatorcontrib><creatorcontrib>Renard, P</creatorcontrib><creatorcontrib>Cabayol, L</creatorcontrib><creatorcontrib>Fernandez, E</creatorcontrib><creatorcontrib>Padilla, C</creatorcontrib><creatorcontrib>Garcia-Bellido, J</creatorcontrib><creatorcontrib>Miquel, R</creatorcontrib><creatorcontrib>De Vicente, J</creatorcontrib><creatorcontrib>Sanchez, E</creatorcontrib><creatorcontrib>Sevilla-Noarbe, I</creatorcontrib><creatorcontrib>Navarro-Gironés, D</creatorcontrib><collection>CrossRef</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>González-Morán, A L</au><au>Arrabal Haro, P</au><au>Muñoz-Tuñón, C</au><au>Rodríguez-Espinosa, J M</au><au>Sánchez-Almeida, J</au><au>Calhau, J</au><au>Gaztañaga, E</au><au>Castander, F J</au><au>Renard, P</au><au>Cabayol, L</au><au>Fernandez, E</au><au>Padilla, C</au><au>Garcia-Bellido, J</au><au>Miquel, R</au><au>De Vicente, J</au><au>Sanchez, E</au><au>Sevilla-Noarbe, I</au><au>Navarro-Gironés, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The PAU survey: classifying low-z SEDs using Machine Learning clustering</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-07-24</date><risdate>2023</risdate><volume>524</volume><issue>3</issue><spage>3569</spage><epage>3581</epage><pages>3569-3581</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract><![CDATA[ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5234 targets in the survey at 0.01 < z < 0.28. Among the groups, 3545 galaxies (68  per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr <11; 6 < log (M⋆/M⊙) <11.26, and −14.67 < log (sSFR/yr−1) <−8. The groups are well-defined in their properties with galaxies having clear emission lines also having lower mass, are younger and have higher sSFR than those with elliptical like patterns. The characteristic values of galaxies showing clear emission lines are in agreement with the literature for starburst galaxies in COSMOS and GOODS-N fields at low redshift. The star-forming main sequence, sSFR versus stellar mass and UVJ diagram show clearly that different groups fall into different regions with some overlap among groups. Our main result is that the joint of low- resolution (R ∼ 50) photometric spectra provided by the PAU survey together with the unsupervised classification provides an excellent way to classify galaxies. Moreover, it helps to find and extend the analysis of extreme ELGs to lower masses and lower SFRs in the local Universe.]]></abstract><pub>Oxford University Press</pub><doi>10.1093/mnras/stad2123</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7959-8783</orcidid><orcidid>https://orcid.org/0000-0002-2733-0670</orcidid><orcidid>https://orcid.org/0000-0001-9632-0815</orcidid><orcidid>https://orcid.org/0000-0002-5953-4491</orcidid><orcidid>https://orcid.org/0000-0003-1123-6003</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-07, Vol.524 (3), p.3569-3581
issn 0035-8711
1365-2966
language eng
recordid cdi_crossref_primary_10_1093_mnras_stad2123
source Oxford Journals Open Access Collection
title The PAU survey: classifying low-z SEDs using Machine Learning clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T23%3A26%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20PAU%20survey:%20classifying%20low-z%20SEDs%20using%20Machine%20Learning%20clustering&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Gonz%C3%A1lez-Mor%C3%A1n,%20A%20L&rft.date=2023-07-24&rft.volume=524&rft.issue=3&rft.spage=3569&rft.epage=3581&rft.pages=3569-3581&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad2123&rft_dat=%3Coup_TOX%3E10.1093/mnras/stad2123%3C/oup_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad2123&rfr_iscdi=true