The PAU survey: classifying low-z SEDs using Machine Learning clustering

ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total num...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-07, Vol.524 (3), p.3569-3581
Hauptverfasser: González-Morán, A L, Arrabal Haro, P, Muñoz-Tuñón, C, Rodríguez-Espinosa, J M, Sánchez-Almeida, J, Calhau, J, Gaztañaga, E, Castander, F J, Renard, P, Cabayol, L, Fernandez, E, Padilla, C, Garcia-Bellido, J, Miquel, R, De Vicente, J, Sanchez, E, Sevilla-Noarbe, I, Navarro-Gironés, D
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We present an application of unsupervised Machine Learning clustering to the PAU survey of galaxy spectral energy distribution (SED) within the COSMOS field. The clustering algorithm is implemented and optimized to get the relevant groups in the data SEDs. We find 12 groups from a total number of 5234 targets in the survey at 0.01 < z < 0.28. Among the groups, 3545 galaxies (68  per cent) show emission lines in the SEDs. These groups also include 1689 old galaxies with no active star formation. We have fitted the SED to every single galaxy in each group with CIGALE. The mass, age, and specific star formation rates (sSFR) of the galaxies range from 0.15 < age/Gyr
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stad2123