Galaxy–galaxy strong lens perturbations: line-of-sight haloes versus lens subhaloes
ABSTRACT We rederive the number density of intervening line-of-sight haloes relative to lens subhaloes in galaxy-galaxy strong lensing observations, where these perturbers can generate detectable image fluctuations. Previous studies have calculated the detection limit of a line-of-sight small-mass d...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2022-04, Vol.512 (4), p.5862-5873 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
We rederive the number density of intervening line-of-sight haloes relative to lens subhaloes in galaxy-galaxy strong lensing observations, where these perturbers can generate detectable image fluctuations. Previous studies have calculated the detection limit of a line-of-sight small-mass dark halo by comparing the lensing deflection angles it would cause, to those caused by a subhalo within the lens. However, this overly simplifies the difference in observational consequences between a subhalo and a line-of-sight halo. Furthermore, it does not take into account degeneracies between an extra subhalo and the uncertain properties of the main lens. More in keeping with analyses of real-world observations, we regard a line-of-sight halo as detectable only if adding it to a smooth model generates a statistically significant improvement in the reconstructed image. We find that the number density of detectable line-of-sight perturbers has been overestimated by as much as a factor of two in the previous literature. For typical lensing geometries and configurations, very deep imaging is sensitive to twice as many line-of-sight perturbers as subhaloes, but moderate depth imaging is sensitive to only slightly more line-of-sight perturbers than subhaloes. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stac759 |