quokka: a code for two-moment AMR radiation hydrodynamics on GPUs
ABSTRACT We present quokka, a new subcycling-in-time, block-structured adaptive mesh refinement (AMR) radiation hydrodynamics (RHD) code optimized for graphics processing units (GPUs). quokka solves the equations of HD with the piecewise parabolic method (PPM) in a method-of-lines formulation, and h...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2022-03, Vol.512 (1), p.1430-1449 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
We present quokka, a new subcycling-in-time, block-structured adaptive mesh refinement (AMR) radiation hydrodynamics (RHD) code optimized for graphics processing units (GPUs). quokka solves the equations of HD with the piecewise parabolic method (PPM) in a method-of-lines formulation, and handles radiative transfer via the variable Eddington tensor (VET) radiation moment equations with a local closure. We use the amrex library to handle the AM management. In order to maximize GPU performance, we combine explicit-in-time evolution of the radiation moment equations with the reduced speed-of-light approximation. We show results for a wide range of test problems for HD, radiation, and coupled RHD. On uniform grids in 3D on a single GPU, our code achieves >250 million hydrodynamic updates per second and almost 40 million radiation hydrodynamic updates per second. For RHD problems on uniform grids in 3D, our code scales from 4 to 256 GPUs with an efficiency of 76 per cent. The code is publicly released under an open-source license on GitHub. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stac439 |