Tidal tracks and artificial disruption of cold dark matter haloes
We describe a simple extension to existing models for the tidal heating of dark matter subhaloes which takes into account second-order terms in the impulse approximation for tidal heating. We show that this revised model can accurately match the tidal tracks along which subhaloes evolve as measured...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2022-10, Vol.517 (1), p.1398-1406 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a simple extension to existing models for the tidal heating of dark matter subhaloes which takes into account second-order terms in the impulse approximation for tidal heating. We show that this revised model can accurately match the tidal tracks along which subhaloes evolve as measured in high-resolution N-body simulations. We further demonstrate that, when a constant density core is introduced into a subhalo, this model is able to quantitatively reproduce the evolution and artificial disruption of N-body subhaloes arising from finite resolution effects. Combining these results we confirm prior work indicating that artificial disruption in N-body simulations can result in a factor two underestimate of the subhalo mass function in the inner regions of host haloes, and a 10–20 per cent reduction over the entire virial volume. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stac2750 |