First insights into the ISM at z > 8 with JWST : possible physical implications of a high [O  iii ] λ4363/[O  iii ] λ5007

We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z > 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 − 7327. By quantitatively comparing Balmer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-01, Vol.518 (1), p.592-603
Hauptverfasser: Katz, Harley, Saxena, Aayush, Cameron, Alex J, Carniani, Stefano, Bunker, Andrew J, Arribas, Santiago, Bhatawdekar, Rachana, Bowler, Rebecca A A, Boyett, Kristan N K, Cresci, Giovanni, Curtis-Lake, Emma, D’Eugenio, Francesco, Kumari, Nimisha, Looser, Tobias J, Maiolino, Roberto, Übler, Hannah, Willott, Chris, Witstok, Joris
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present a detailed analysis of the rest-frame optical emission line ratios for three spectroscopically confirmed galaxies at z > 7.5. The galaxies were identified in the James Webb Space Telescope (JWST) Early Release Observations field SMACS J0723.3 − 7327. By quantitatively comparing Balmer and oxygen line ratios of these galaxies with various low-redshift ‘analogue’ populations (e.g. Green Peas, Blueberries, etc.), we show that no single analogue population captures the diversity of line ratios of all three galaxies observed at z > 7.5. We find that S06355 at z = 7.67 and S10612 at z = 7.66 are similar to local Green Peas and Blueberries. In contrast, S04590 at z = 8.50 appears to be significantly different from the other two galaxies, most resembling extremely low-metallicity systems in the local Universe. Perhaps the most striking spectral feature in S04590 is the curiously high [O iii] λ4363/[O iii] λ5007 ratio (RO3) of 0.048 (or 0.055 when dust-corrected), implying either extremely high electron temperatures, >3 × 104 K, or gas densities >104 cm−3. Observed line ratios indicate that this galaxy is unlikely to host an AGN. Using photoionization modelling, we show that the inclusion of high-mass X-ray binaries or a high cosmic ray background in addition to a young, low-metallicity stellar population can provide the additional heating necessary to explain the observed high RO3 while remaining consistent with other observed line ratios. Our models represent a first step at accurately characterizing the dominant sources of photoionization and heating at very high redshifts, demonstrating that non-thermal processes may become important as we probe deeper into the Epoch of Reionization.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stac2657