Common envelopes in massive stars II: The distinct roles of hydrogen and helium recombination

Abstract The role of recombination during a common-envelope event has been long debated. Many studies have argued that much of hydrogen recombination energy, which is radiated in relatively cool and optically thin layers, might not thermalize in the envelope. On the other hand, helium recombination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-09, Vol.516 (4), p.4669-4678
Hauptverfasser: Lau, Mike Y M, Hirai, Ryosuke, Price, Daniel J, Mandel, Ilya
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The role of recombination during a common-envelope event has been long debated. Many studies have argued that much of hydrogen recombination energy, which is radiated in relatively cool and optically thin layers, might not thermalize in the envelope. On the other hand, helium recombination contains ≈30 per cent of the total recombination energy, and occurs much deeper in the stellar envelope. We investigate the distinct roles played by hydrogen and helium recombination in a common-envelope interaction experienced by a 12 $\, \rm {M}_{\odot }$ red supergiant donor. We perform adiabatic, 3D hydrodynamical simulations that (i) include hydrogen, helium, and H2 recombination, (ii) include hydrogen and helium recombination, (iii) include only helium recombination, and (iv) do not include recombination energy. By comparing these simulations, we find that the addition of helium recombination energy alone ejects 30 per cent more envelope mass, and leads to a 16 per cent larger post-plunge-in separation. Under the adiabatic assumption, adding hydrogen recombination energy increases the amount of ejected mass by a further 40 per cent, possibly unbinding the entire envelope, but does not affect the post-plunge separation. Most of the ejecta becomes unbound at relatively high (>70 per cent) degrees of hydrogen ionisation, where the hydrogen recombination energy is likely to expand the envelope instead of being radiated away.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stac2490