The Be/neutron star system Swift J004929.5-733107 in the Small Magellanic Cloud–X-ray characteristics and optical counterpart candidates

ABSTRACT Swift J004929.5-733107 is an X-ray source in the Small Magellanic Cloud (SMC) that has been reported several times, but the optical counterpart has been unclear due to source confusion in a crowded region of the SMC. Previous works proposed [MA93] 302 as the counterpart, however we show her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-06, Vol.504 (1), p.1398-1406
Hauptverfasser: Coe, M J, Kennea, J A, Evans, P A, Townsend, L J, Udalski, A, Monageng, I M, Buckley, D A H
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Swift J004929.5-733107 is an X-ray source in the Small Magellanic Cloud (SMC) that has been reported several times, but the optical counterpart has been unclear due to source confusion in a crowded region of the SMC. Previous works proposed [MA93] 302 as the counterpart, however we show here, using data obtained from the S-CUBED project, that the X-ray position is inconsistent with that object. Instead we propose a previously unclassified object which has all the indications of being a newly identified Be star exhibiting strong H α emission. Evidence for the presence of significant I-band variability strongly suggest that this is, in fact, a Be type star with a large circumstellar disc. Over 18 yr worth of optical monitoring by the OGLE project reveal a periodic modulation at a period of 413 d, probably the binary period of the system. A SALT optical spectrum shows strong Balmer emission and supports a proposed spectral classification of B1-3 III-IVe. The X-ray data obtained from the S-CUBED project reveal a time-averaged spectrum well fitted by a photon index Γ = 0.93 ± 0.16. Assuming the known distance to the SMC, the flux corresponds to a luminosity ∼1035 erg s−1. All of these observational facts suggest that this is confirmed as a Be star–neutron star X-ray binary (BeXRB) in the SMC, albeit one with an unusually long binary period at the limits of the Corbet Diagram.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab972