High-resolution imaging follow-up of doubly imaged quasars

ABSTRACT We report upon 3 years of follow-up and confirmation of doubly imaged quasar lenses through imaging campaigns from 2016 to 2018 with the Near-Infrared Camera2 (NIRC2) on the W. M. Keck Observatory. A sample of 57 quasar lens candidates are imaged in adaptive-optics-assisted or seeing-limite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2021-05, Vol.503 (2), p.1557-1567
Hauptverfasser: Shajib, Anowar J, Molina, Eden, Agnello, Adriano, Williams, Peter R, Birrer, Simon, Treu, Tommaso, Fassnacht, Christopher D, Morishita, Takahiro, Abramson, Louis, Schechter, Paul L, Wisotzki, Lutz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT We report upon 3 years of follow-up and confirmation of doubly imaged quasar lenses through imaging campaigns from 2016 to 2018 with the Near-Infrared Camera2 (NIRC2) on the W. M. Keck Observatory. A sample of 57 quasar lens candidates are imaged in adaptive-optics-assisted or seeing-limited K′-band observations. Out of these 57 candidates, 15 are confirmed as lenses. We form a sample of 20 lenses adding in a number of previously known lenses that were imaged with NIRC2 in 2013–14 as part of a pilot study. By modelling these 20 lenses, we obtain K′-band relative photometry and astrometry of the quasar images and the lens galaxy. We also provide the lens properties and predicted time delays to aid planning of follow-up observations necessary for various astrophysical applications, e.g. spectroscopic follow-up to obtain the deflector redshifts for the newly confirmed systems. We compare the departure of the observed flux ratios from the smooth-model predictions between doubly and quadruply imaged quasar systems. We find that the departure is consistent between these two types of lenses if the modelling uncertainty is comparable.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab532