Neural-network assisted study of nitrogen atom dynamics on amorphous solid water – II. Diffusion

ABSTRACT The diffusion of atoms and radicals on interstellar dust grains is a fundamental ingredient for predicting accurate molecular abundances in astronomical environments. Quantitative values of diffusivity and diffusion barriers usually rely heavily on empirical rules. In this paper, we compute...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-02, Vol.510 (2), p.3063-3070
Hauptverfasser: Zaverkin, Viktor, Molpeceres, Germán, Kästner, Johannes
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The diffusion of atoms and radicals on interstellar dust grains is a fundamental ingredient for predicting accurate molecular abundances in astronomical environments. Quantitative values of diffusivity and diffusion barriers usually rely heavily on empirical rules. In this paper, we compute the diffusion coefficients of adsorbed nitrogen atoms by combining machine learned interatomic potentials, metadynamics, and kinetic Monte Carlo simulations. With this approach, we obtain a diffusion coefficient of nitrogen atoms on the surface of amorphous solid water of merely $(3.5 \pm 1.1)\, \times 10^{-34}$ cm2 s−1 at 10 K for a bare ice surface. Thus, we find that nitrogen, as a paradigmatic case for light and weakly bound adsorbates, is unable to diffuse on bare amorphous solid water at 10 K. Surface coverage has a strong effect on the diffusion coefficient by modulating its value over 9–12 orders of magnitude at 10 K and enables diffusion for specific conditions. In addition, we have found that atom tunnelling has a negligible effect. Average diffusion barriers of the potential energy surface (2.56 kJ mol−1) differ strongly from the effective diffusion barrier obtained from the diffusion coefficient for a bare surface (6.06 kJ mol−1) and are, thus, inappropriate for diffusion modelling. Our findings suggest that the thermal diffusion of N on water ice is a process that is highly dependent on the physical conditions of the ice.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab3631