Radio Galaxy Zoo: giant radio galaxy classification using multidomain deep learning

ABSTRACT In this work we explore the potential of multidomain multibranch convolutional neural networks (CNNs) for identifying comparatively rare giant radio galaxies from large volumes of survey data, such as those expected for new generation radio telescopes like the SKA and its precursors. The ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-03, Vol.510 (3), p.4504-4524
Hauptverfasser: Tang, H, Scaife, A M M, Wong, O I, Shabala, S S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT In this work we explore the potential of multidomain multibranch convolutional neural networks (CNNs) for identifying comparatively rare giant radio galaxies from large volumes of survey data, such as those expected for new generation radio telescopes like the SKA and its precursors. The approach presented here allows models to learn jointly from multiple survey inputs, in this case NVSS and FIRST, as well as incorporating numerical redshift information. We find that the inclusion of multiresolution survey data results in correction of 39 per cent of the misclassifications seen from equivalent single domain networks for the classification problem considered in this work. We also show that the inclusion of redshift information can moderately improve the classification of giant radio galaxies.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab3553