The Magellanic Edges Survey – II. Formation of the LMC’s northern arm

ABSTRACT The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Mag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2022-02, Vol.510 (1), p.445-468
Hauptverfasser: Cullinane, L R, Mackey, A D, Da Costa, G S, Erkal, D, Koposov, S E, Belokurov, V
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT The highly-substructured outskirts of the Magellanic Clouds provide ideal locations for studying the complex interaction history between both Clouds and the Milky Way (MW). In this paper, we investigate the origin of a >20° long arm-like feature in the northern outskirts of the Large Magellanic Cloud (LMC) using data from the Magellanic Edges Survey (MagES) and Gaia EDR3. We find that the arm has a similar geometry and metallicity to the nearby outer LMC disc, indicating that it is comprised of perturbed disc material. Whilst the azimuthal velocity and velocity dispersions along the arm are consistent with those in the outer LMC, the in-plane radial velocity and out-of-plane vertical velocity are significantly perturbed from equilibrium disc kinematics. We compare these observations to a new suite of dynamical models of the Magellanic/MW system, which describe the LMC as a collection of tracer particles within a rigid potential, and the SMC as a rigid Hernquist potential. Our models indicate the tidal force of the MW during the LMC’s infall is likely responsible for the observed increasing out-of-plane velocity along the arm. Our models also suggest close LMC/SMC interactions within the past Gyr, particularly the SMC’s pericentric passage ∼150 Myr ago and a possible SMC crossing of the LMC disc plane ∼400 Myr ago, likely do not perturb stars that today comprise the arm. Historical interactions with the SMC prior to ∼1 Gyr ago may be required to explain some of the observed kinematic properties of the arm, in particular its strongly negative in-plane radial velocity.
ISSN:0035-8711
1365-2966
DOI:10.1093/mnras/stab3350